A New Metal Sensory System Based on Intramolecular Fluorescence Quenching on the Ionophoric Calix[4]arene Ring

Izuo Aoki, Toru Sakaki and Seiji Shinkai*

CHEMIRECOGNICS Project, ERATO, Research Development Corporation of Japan, c/o Fukuoka Industrial Technology Center, 332-1 Kamikoga, Chikushino-shi, Fukuoka 818, Japan

To design a new metal sensory system, calix[4]arene bearing pyrene (as a fluorophore) and nitrobenzene (as a quencher) near the ionophoric cavity is synthesized: in response to the metal-binding event the fluorescence intensity is dramatically enhanced.

Calixarenes are cyclic oligomers made up of phenol units linked by methylene bridges. Owing to their cavity-shaped architecture, they are useful building blocks in the design of novel host molecules.^{1,2} Calixarene derivatives incorporating ionophoric functional groups such as ester and amide linkages on the phenolic oxygen atoms exhibit some excellent properties as neutral receptors for metal ions: they form stable complexes and show sharp size selectivity because of their well preorganized ionophoric groups.^{3,4} We thus considered that they would provide a potential sensory system for metal ions if one could modify their molecular structures so as to transduce a chemical signal (*e.g.* metal concentration) to a physical signal (*e.g.* light).

Sensory systems which employ cation-controlled photoinduced electron transfer and conformational changes are known.⁵ In order to design such a calixarene-based sensory system, we applied fluorescence quenching which is frequently observed for the photoinduced electron transfer system.^{6–8} It is well known that nitrobenzene is capable of quenching the fluorescence of aromatic hydrocarbons very effectively under appropriate conditions.⁹ This suggests that if the quenching efficiency is disturbed through the metalbinding event, a large change in the emission intensity can be expected. We thus introduced pyrene (as a fluorophore) and nitrobenzene (as a quencher) near the ionophoric cavity composed of four esters on the calix[4]arene ring (compound 1). Fluorescence recovery by disconnecting fluorophore– nitrobenzene systems is known.^{7,8}

Compound 1 (m.p. 73 °C) was synthesized by the method shown in Scheme 1. Compound 2 (m.p. 69 °C) was synthesized by the method similar to that described for 1. The structures and the purities of 1, 2 and 3 (m.p. 94 °C: used as a reference compound) were identified by IR, ¹H NMR spectroscopy and elemental analysis. Compounds 1 and 2 adopted the rigid cone conformation, which was confirmed from the ArCH₂Ar splitting pattern in their ¹H NMR spectra.[†] Typical fluorescence spectra of 1, 2 and 3 are illustrated in Fig. 1. Although the spectrum of 1 was very similar to those of 2 and 3, the intensity of 1 was smaller by a factor of 50 than those of 2 and 3 $([1, 2 \text{ or } 3] = 1.00 \times 10^{-6} \text{ mol } \text{dm}^{-3})$. The ratio of the fluorescence intensities of 1 vs. 2 (I_1/I_2) increased with increasing solvent viscosity: $I_1/I_2 = 0.026$ in diethyl ether (0.22) mPa s at 30 °C), 0.034 in 1,4-dioxane (1.20 mPa s at 25 °C) and 0.081 in polyethylene glycol (the average molecular mass: 400, 95 mPa s at 25 °C). The spectral shape of 1 was scarcely affected in these solvents. These findings suggest that the fluorescence quenching in 1 involves the intramolecular dynamic quenching between the nitrobenzene quencher and the excited pyrene fluorophore.‡

When alkali metal ions were added to 1 in a diethyl ether-acetonitrile mixed solvent (97:3, v/v%),§ the fluorescence intensity increased sensitively (at least 6.3 times of that in the absence of the metal ion). In contrast, such a fluorescence

§ The metal-induced fluorescence increase in 1 was also observed in 1,4-dioxane and benzene but not so significant in methanol and acetonitrile.

^{† &}lt;sup>1</sup>H NMR data (CDCl₃, 25 °C, δ from SiMe₄). δ (ArCH₂Ar) 3.20, 3.21, 4.83, and 4.89 (d each, 2H each, *J* 13.8 Hz each) for 1. δ (ArCH₂Ar) 3.12, 3.17, 4.88, and 4.90 (d each, 2H each, *J* 13.8 Hz each) for 2.

[‡] The intermolecular quenching was effectively negligible under the present condition ([1] = 1.00×10^{-6} mol dm⁻³).

Scheme 1 Reagents: i, BrCH₂CO₂Et, K₂CO₃ in acetone; ii, p-NO₂C₆H₄CH₂OCOCH₂Br, CaH₂ in N,N-dimethylformamide; iii, C₁₆H₉CH₂OCOCH₂Br, K₂CO₃ in acetone

Fig. 1 Typical fluorescence spectra of 1, 2 and 3 in methanol at 25 °C. The ordinate scale for 1 was expanded by a factor of 25. $[1, 2 \text{ or } 3] = 1.00 \times 10^{-6} \text{ mol dm}^{-3}$. Excitation wavelength: 342 nm for 1 and 2, and 340 nm for 3.

change was not observed for 2 and 3. The fluorescence quantum yields (Φ_f) of 1, 1·NaSCN, 2 and 3 are 0.0025, 0.016, 0.098 and 0.10, respectively (at 25 °C in non-degassed diethyl ether, $\lambda_{ex} = 342$ nm).¶ This shows the Φ_f for 1 is exceptionally small. In Fig. 2, we show a plot of the fluorescence intensity against the added NaSCN concentation. From the analysis of this plot by the equilibrium-shift method, we concluded that 1 forms a 1:1 complex with Na⁺. We also determined the association constants (K_{ass}) with alkali metal ions from the similar plots of the fluorescence intensity against [M⁺]: log K_{ass} /mol dm⁻³ = 1.2 for LiSCN, 4.3 for NaSCN, 2.9 for KSCN, 2.2 for CsSCN and 1.9 for NH₄SCN [at 25 °C in a mixed solvent of diethyl ether and acetonitrile (97:3, v/v%)].

Fig. 2 Plot of fluorescence intensity vs. [NaSCN] (a) and its analysis by the equilibrium-shift method (b). $[1] = 1.00 \times 10^{-6}$ mol dm⁻³, diethyl ether-acetonitrile (97:3, v/v%), at 25 °C.

These K_{ass} values are comparable with those estimated for tetraethyl ester derivatives of calix[4]arene in tetrahydro-furan.¹⁰

Why does the fluorescence intensity of 1 increase so sensitively on the addition of metal ions? To obtain some insights into the conformational change in the pyrene and nitrobenzene moieties, we measured the ¹H NMR spectra of 1 in the absence and presence of Na⁺. As shown in Fig. 3, the chemical shifts (δ /ppm from SiMe₄) of the nitrobenzene protons in 4 (compound shown in Scheme 1) appeared at 87.6 and 8.2. In 1, on the other hand, they shifted to higher magnetic field because of a ring-current effect of the pyrene π -system (δ 6.8 and 7.6, respectively).¹⁵ This supports the view that in free 1 the nitrobenzene moiety exists near the pyrene ring. On the other hand, when Na+ was added to 1, the δ values moved to lower magnetic field (δ 7.6 and 8.3, respectively) and were comparable with those for 4. This suggests that the nitrobenzene and the pyrene in the 1-Na⁺ complex are far separated. On the basis of these ¹H NMR data we can expect the following metal-induced conformational change. In free 1, the ester groups can rotate freely and thus

[¶] The Φ_f of 1-LiSCN, 1-KSCN, 1-CsSCN and 1-NH₄SCN are 0.017, 0.015, 0.015 and 0.016, respectively; these Φ_f values contain $\pm 20\%$ errors because the plots of fluorescence intensity *vs*. [MSCN] were not fully saturated because of their poor solubility. The Φ_f values were compared with a quinine H₂SO₄ (0.1 mol dm⁻³) solution (λ_{ex} = 366 nm, Φ_f = 0.55). The molar absorptivities of 1, 1-NaSCN, 2 and 3 are 4.3 × 10⁻⁴, 4.6 × 10⁴, 4.6 × 10⁴ and 4.6 × 10⁴ dm³ mol⁻¹ cm⁻¹ (at 342 nm), respectively. We also notice that the pyrenyl ring and the *p*-nitrophenyl ring weakly interact at the ground state (although the distinct charge-transfer band does not appear), which is evidenced by the molar absorptivity for 1 being relatively smaller than those for others.

^{||} The assignment was achieved with the aid of 2D COSY ¹H NMR because the signals for the nitrobenzene protons overlapped with those for the phenyl and pyrenyl protons.

Compound 4

Fig. 3 Partial ¹H NMR spectra (250 MHz) of **4**, **1** and **1**·Na⁺ complex in CDCl₃ at 25 °C. [**4**, **1** or **1**·Na⁺ complex] = 1.0×10^{-2} mol dm⁻³. \bullet indicates the signals for *m*-protons and \bigcirc indicates those for *o*-protons in the 4-nitrobenzyl moiety.

the pyrene ring collapses with the nitrobenzene quencher in some probability. In contrast, when Na^+ is added to 1, the ester carbonyls orientate inwards so that they may trap Na^+ in the ionophoric cavity. This metal-induced orientation dramatically reduces the collision probability between the pyrene fluorophore and the nitrobenzene quencher. As a result, metal-induced fluorescence increase was realized in 1.

In conclusion, the present paper demonstrated that the basic idea that a metal-induced conformational change would affect the fluorescence quenching process really works and is applicable to a novel calixarene-based host-guest sensory system. A similar conformational change in a similar system has been shown to control excimer-monomer equilibria.¹¹

We thank Miss Y. Kawahara for technical assistance.

Received, 23rd December 1991; Com. 1/06432K

References

- 1 C. D. Gutsche, *Calixarenes*, Royal Society of Chemistry, Cambridge, 1989.
- 2 T. Arimura, S. Shinkai and T. Matsuda, Yuki Gosei Kagaku-Kyokaishi, 1989, 47, 523.
- 3 F. A. Neu, E. M. Collins, M. Deasy, G. Ferguson, S. J. Harris, B. Kaitner, A. J. Lough, M. A. McKervey, E. Marques, B. L. Ruhl, M. J. S. Weill and E. M. Seward, J. Am. Chem. Soc., 1989, 111, 8681.
- 4 A. Arduini, A. Pochini, S. Reverberi and R. Ungaro, *Tetrahedron*, 1986, 42, 2089.
- 5 A. P. de Silva and H. Q. N. Gunaratne, J. Chem. Soc., Chem. Commun., 1990, 186.
- 6 Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988.
- 7 R. T. Cummings and G. A. Krafft, Tetrahedron Lett., 1988, 29, 65.
- 8 F. W. J. Teale and D. Constable, in *Fluorescence Probes*, ed. G. S. Beddard and M. A. West, London, 1981, ch. 1.
- 9 M. Koizumi, Hikari Kagaku Gairon (An Introduction to Photochemistry), Asakura Shoten, 1965.
- 10 T. Arimura, M. Kubota, T. Matsuda, O. Manabe and S. Shinkai, Bull. Chem. Soc. Jpn., 1989, 62, 1674.
- 11 I. Aoki, H. Kawabata, K. Nakashima and S. Shinkai, J. Chem. Soc., Chem. Commun., 1991, 1771.